Topological equivalence and topological linearization of controlled dynamical systems

نویسنده

  • Sergej Celikovský
چکیده

The general, differential-equation-independent definition of a continuous-time controlled dynamical system as well as of the state space transformation and static state feedback are introduced. This approach makes it possible to consider transformations that are not smooth and introduce the so-called topological equivalence of controlled dynamical sys­ tems. It is shown that this approach generalizes the usual definitions based on the notion of the smooth ordinary differential equation with the control parameter. Topological equiv­ alence is then used to introduce and investigate the problem of exact topological feedback linearization of a given nonlinear system. Sufficient conditions for the topological linearizability of planar systems are obtained. They particularly show that there do exist smooth systems that are topologically linearizable, but not smoothly linearizable. Finally, we in­ dicate possible application of the topological linearization to the nonsmooth stabilization. Illustrative examples are included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy operator for continuous dynamical systems of finite topological entropy

In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.

متن کامل

On the topological equivalence of some generalized metric spaces

‎The aim of this paper is to establish the equivalence between the concepts‎ ‎of an $S$-metric space and a cone $S$-metric space using some topological‎ ‎approaches‎. ‎We introduce a new notion of a $TVS$-cone $S$-metric space using‎ ‎some facts about topological vector spaces‎. ‎We see that the known results on‎ ‎cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained‎ from...

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

On Local Linearization of Control Systems

We consider the problem of topological linearization of smooth (C or C) control systems, i.e. of their local equivalence to a linear controllable system via point-wise transformations on the state and the control (static feedback transformations) that are topological but not necessarily differentiable. We prove that local topological linearization implies local smooth linearization, at generic ...

متن کامل

Dynamical distance as a semi-metric on nuclear conguration space

In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Kybernetika

دوره 31  شماره 

صفحات  -

تاریخ انتشار 1995